# Demonstrating a Machine Learning model for edictive Maintenance on Microsoft Azure -new release

An UberCloud Experiment

## Written by

Joseph Pareti - Artificial Intelligence consultant cell +49 1520 1600 209 email: joepareti54@gmail.com

## With Support From



## UberCloud Case Study

http://www.TheUberCloud.com

This document is the continuation of case study 212, and it's about a new release of the software by Microsoft. The functionality of the model, and predictive precision and accuracy are the same as in the first release, however the current implementation is based on <u>Azure Machine Learning</u> <u>Services</u> and <u>databricks</u> that significantly reduces time-to-solution, while simplifying the end-user's administration task, since the entire application runs in Azure. Therefore, the desk-top front end, "Azure Machine Learning Workbench" which was a required component in the first release, has been removed.

MEET THE TEAM End-User: TBD Software Provider: Open Source Resource Provider: Microsoft Azure Al Consultant: Joseph Pareti

#### UberCloud: Wolfgang Gentsch Microsoft Support: Yassine Khelifi

#### USE CASE

The Predictive Maintenance model described in this report is open source and can be applied to different equipment types for which telemetry data and maintenance data records are available. The implementation described herein assumes an Azure cloud subscription and some operating knowledge on Azure.

4 machine types are considered, each machine has 4 components, and there is telemetry data available on voltage, vibration, speed, and pressure, as well as maintenance records (indicating when last a component was replaced on what machine), error logs (not necessarily implying failure), machine characteristics, and how long each machine has been in service. The model is built in 4 stages each of which is implemented in a Jupyter notebook running Python version3:

- 1. Data ingestion
- 2. Feature engineering
- 3. ML model
- 4. Operationalization

Notebook 1, Data ingestion is about accessing the datasets from blob storage, cleaning the data, and storing the data as a SPARK dataframe in cluster for further processing by the next notebooks.

Notebook 2, Feature engineering loads the data sets created in the Data Ingestion notebook and combines them to create a single data set of features (variables) that can be used to infer a machine health condition over time.

The goal is to generate a single record for each time unit within each asset. The record includes features and labels to be fed into the machine learning algorithm.

Predictive maintenance takes historical data, marked with a timestamp, to predict current health of a component and the probability of failure within some future window of time. These problems can be characterized as a classification method involving time series data. Time series, since we want to use historical observations to predict what will happen in the future. Classification, because we classify the future as having a probability of failure.

Notebook 3, The ML model uses the labeled feature data set constructed in notebook 2, it loads the data and splits it into a training and test data set. We then build a machine learning model (a decision tree classifier or a random forest classifier) to predict when different components within our machine population will fail.

Two different classification model approaches are available in this notebook:

- Decision Tree Classifier: Decision trees and their ensembles are popular methods for the machine learning tasks of classification and regression. Decision trees are widely used since they are easy to interpret, handle categorical features, extend • to the multiclass classification setting, do not require feature scaling, and are able to capture non-linearities and feature interactions.
- Random Forest Classifier: A random forest is an ensemble of decision trees. Random forests combine many decision trees in order to reduce the risk of overfitting. Tree ensemble algorithms such as random forests and boosting are among the top performers for classification and regression tasks.

Notebook 4, Operationalization is about loading the model from the Code/3 model building.ipynb Jupyter notebook and the labeled feature data set constructed in the Code/2 feature engineering.ipynb notebook in order to build the model deployment artifacts.

The notebook is used to deploy and operationalize the model and is built on the Azure Machine Learning service SDK.

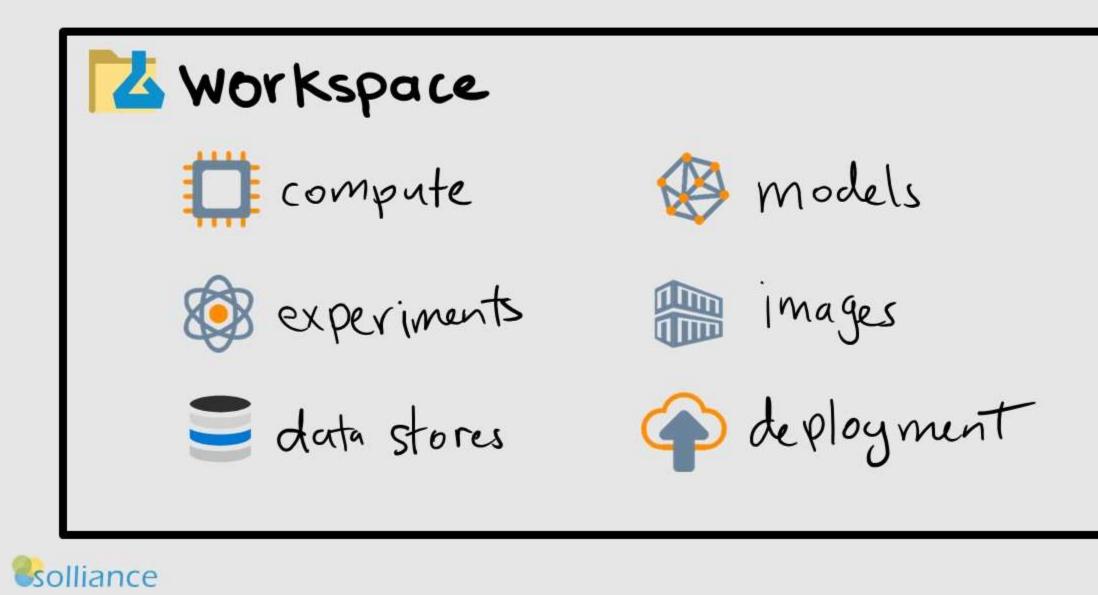
There are 4 appendices at the end of this report, each of which containing the code and computation output from the 4 notebooks listed above.

#### **AZURE Machine Learning SDK on Azure Databricks**

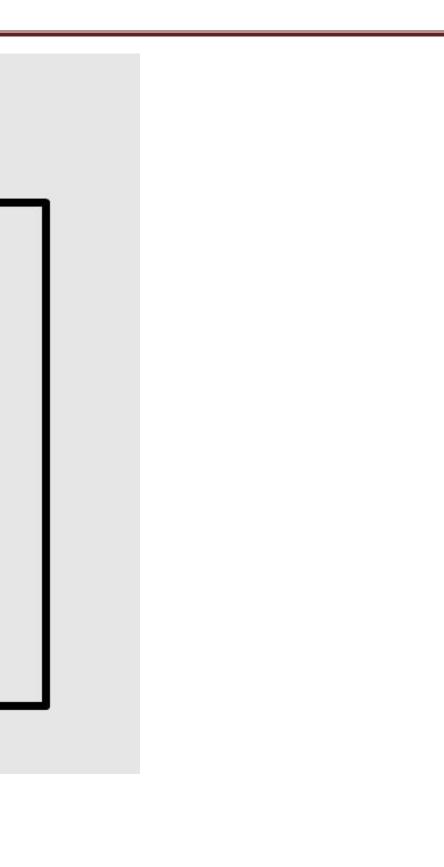
The ML SDK and databricks are options to implement custom AI which require custom data and model training.

The Azure ML SDK defines a workspace that contains compute and storage resources, as well as models, experiments (i.e. all attempts with different parameters), and deployment services such as docker images

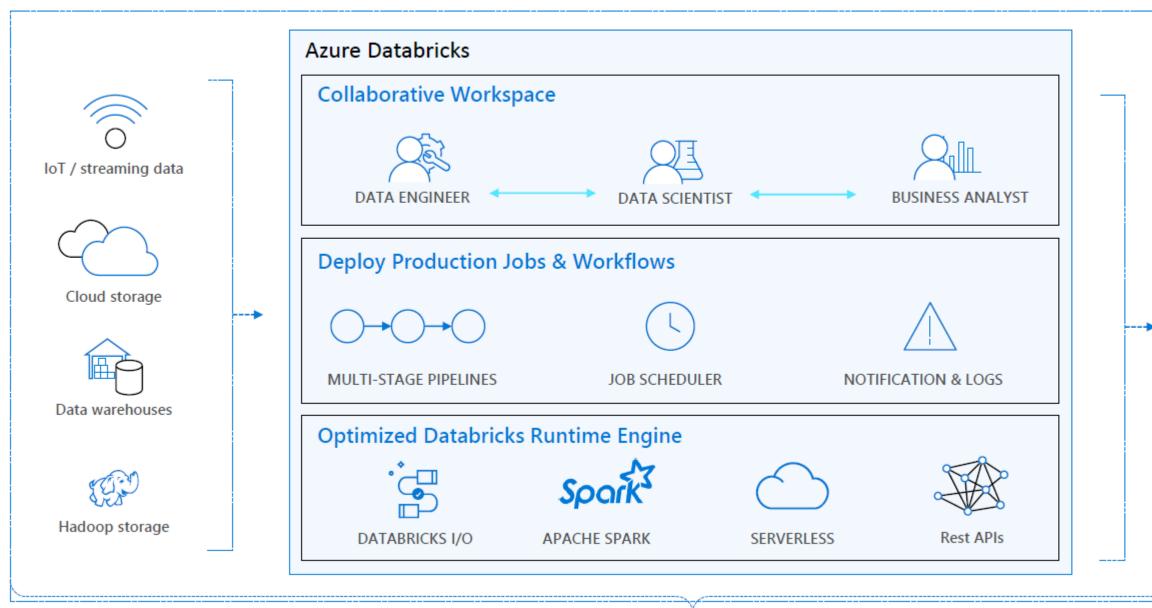
# **Azure Machine Learning Workspace - logical**



Databricks is an architecture for SPARK environments that provides out-of-the-box support for common interfaces and supports at-scale ML deployment



# **Azure Databricks**



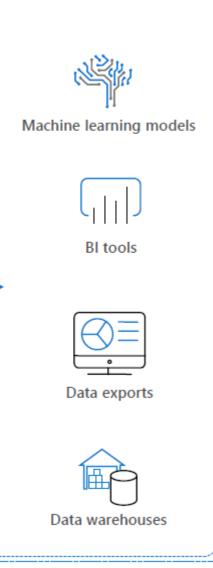
## **Enhance Productivity**

#### My SYSTEM ARCHITECTURE

The following has been implemented:

- A <u>workspace</u> in Azure
- A development environment for ML

Build on secure & trusted cloud



Scale without limits

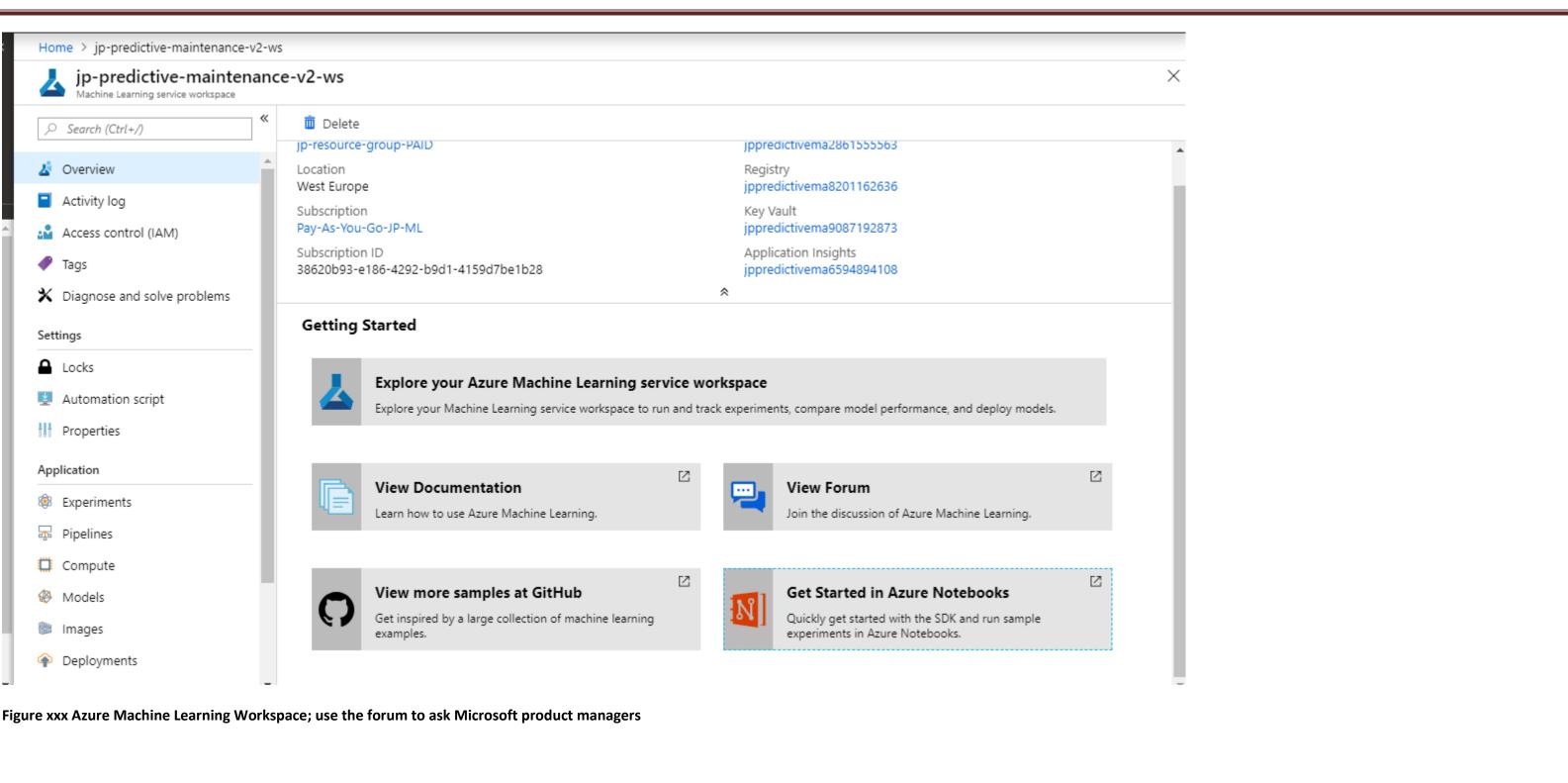
- An <u>Azure Databricks</u> cluster deployed with the following configuration:
  - Databricks Runtime version: (latest stable release)(Scala 2.11)
  - Python version: 3
  - Driver/Worker type: Standard\_DS13\_v2
  - Python libraries installed:

ipython==2.2.0, pyOpenSSL==16.0.0, psutil, azureml-sdk[databricks], cryptography==1.5

In my implementation the following was set:

- Azure workspace
- Databricks workspace
- Databricks cluster, including 2 to 8 nodes that are DS3\_v2 virtual machines
- Libraries on databricks cluster

The screen dumps below provide additional detail to the above.



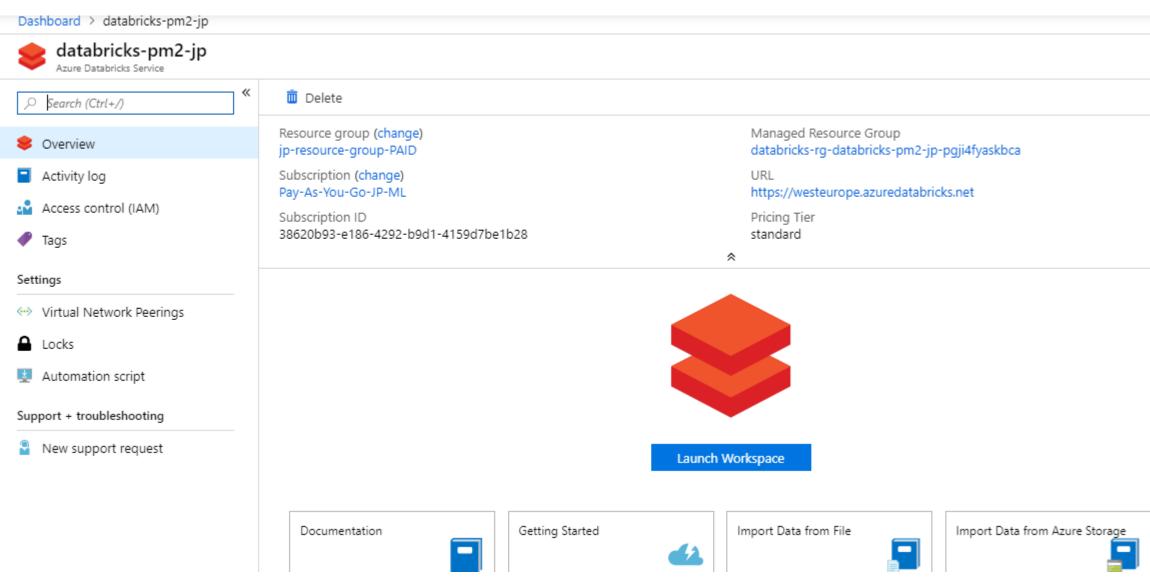


Figure xxx databricks Workspace

Ś

| Clusters / databricks-o        | cluster-jp          |           |                |             |             |                    |          |
|--------------------------------|---------------------|-----------|----------------|-------------|-------------|--------------------|----------|
| <ul> <li>databricks</li> </ul> | -cluster-j          | p 🔻       | ☑ Edit         | 省 Clone     | 2 Restart   | Terminate          | × Delete |
| Configuration Notebo           | ooks (0) Librarie   | es (0)    | Event Log      | Spark UI    | Driver Logs | Spark Cluster UI - | Master 🕶 |
| Cluster Mode 📀                 |                     |           |                |             |             |                    |          |
| Standard                       |                     |           | $\sim$         |             |             |                    |          |
| Databricks Runtime Versio      | n                   |           |                |             |             |                    |          |
| 5.2 (includes Apache Spa       | rk 2.4.0, Scala 2.1 | 1)        |                |             |             |                    |          |
| Python Version 📀               |                     |           |                |             |             |                    |          |
| 3                              |                     |           |                |             |             |                    |          |
| Autopilot Options              |                     |           |                |             |             |                    |          |
| Enable autoscaling             |                     |           |                |             |             |                    |          |
| Terminate after 120            | minutes of ina      | ctivity 🕜 |                |             |             |                    |          |
| Worker Type                    |                     |           |                | Min Workers | Max Workers |                    |          |
| Standard_DS3_v2                | 14.0 GB Me          | mory, 4 C | ores, 0.75 DBU | 2           | 8           |                    |          |
| Driver Type                    |                     |           |                |             |             |                    |          |
| Standard_DS3_v2                | 14.0 GB Me          | mory, 4 C | ores, 0.75 DBU |             |             |                    |          |

Advanced Options

Figure xxx databricks cluster; set the terminate flag to avoid being charged after the job is done; enable autoscaling to allow databricks to grow or shrink according to job requirement

| databricks                                                 | View Azure Databricks documentation                                                           | Microsoft Azure                                           |
|------------------------------------------------------------|-----------------------------------------------------------------------------------------------|-----------------------------------------------------------|
| Databricks IO Cache                                        |                                                                                               | Azure<br>Azure<br>Atabricks Library Source                |
| Business Intelligence Tools<br>Advanced Features           | Delete a Workspace library                                                                    | Upload DBFS PyPI Maven CR/                                |
| Security<br>FAQ and Best Practices Guides                  | Create a Workspace library                                                                    | Home Repository O<br>Optional                             |
| Administration Guide<br>REST API                           | <ol> <li>Right-click the Workspace folder where you<br/>want to store the library.</li> </ol> | Package     PyPI package (simplejson or simplejson=3.8.0) |
| Release Notes                                              | 2. Select Create > Library.                                                                   | Recents                                                   |
| Databricks Delta Guide<br>SQL Guide<br>Spark R Guide       | P Databricks Guide     D Shared     D Users     Create     Cone     Ubrary                    | Create Cancel                                             |
| DataFrames and Datasets<br>Data Sources                    | Export B                                                                                      | Clusters                                                  |
| Structured Streaming Guide<br>Machine Learning             | The Create Library dialog displays.                                                           | Jobs                                                      |
| Training and FAQ<br>MLflow Guide                           | Library Source                                                                                | Search                                                    |
| Deep Learning Gui <mark>d</mark> e<br>Graph Analysis Guide | Library Type<br>Jar Python Egg Python Whl                                                     |                                                           |
| Genomics Guide                                             | Library Name<br>Optional                                                                      |                                                           |
| Updated Mar 05, 2019                                       |                                                                                               |                                                           |

Figure xxx Libraries on databricks cluster. Left: User's guide, Right: my configuration

|    | PORTAL | joepareti54@gmail.com |   |  |
|----|--------|-----------------------|---|--|
|    |        | ?                     | - |  |
| AN |        |                       |   |  |
|    |        |                       |   |  |
|    |        |                       |   |  |
|    |        |                       |   |  |

| edatabricks                   | View Azure Databricks documentation                                                                                             | Micros              | soft Azure                                        |                         |
|-------------------------------|---------------------------------------------------------------------------------------------------------------------------------|---------------------|---------------------------------------------------|-------------------------|
|                               |                                                                                                                                 |                     | ipython==2.2.0, p                                 | yOpenSSL==16.0          |
| Search                        | PyPI package                                                                                                                    | Azure<br>Databricks | PyPI rules                                        |                         |
| 🗅 Databricks                  | <ol> <li>In the Library Source button list, select <b>PyPI</b>.</li> <li>In the Repository field, optionally enter a</li> </ol> | A Home              | ipython==2.2.0<br>pyOpenSSL==16.0.0<br>psutil     |                         |
| Getting Started Guide         | PyPI repository URL.                                                                                                            | В                   | -<br>azureml-sdk[databricks]<br>cryptography==1.5 |                         |
| - User Guide                  | <ol> <li>Enter a PyPI package name. To install a<br/>specific version of a library use this format for</li> </ol>               | Workspace           | Status on runnir                                  | ng clusters             |
| Supported Browsers            | the library: <library>==<version>.For</version></library>                                                                       | •                   | <ul> <li>Install automatically on</li> </ul>      | all clusters            |
| Clusters                      | example, scikit-learn==0.19.1.                                                                                                  | Recents             | 🖏 Uninstall 🛛 🗞 Insta                             | all                     |
| Workspace                     | 4. Click Create. The library status screen                                                                                      |                     | Status                                            | Cluster Name            |
| Notebooks                     | displays.                                                                                                                       | Data                | Installed                                         | ip-databricks-cluster-4 |
| Visualizations                | 5. Optionally install the library on a cluster.                                                                                 |                     |                                                   | JP Galaxiero Galero     |
| Accessing Data                |                                                                                                                                 | <b>.</b>            |                                                   |                         |
| Databases and Tables          | Maven or Spark package                                                                                                          | Clusters            |                                                   |                         |
| + Libraries                   | 1. In the Library Source button list, select                                                                                    |                     |                                                   |                         |
| Jobs                          | Maven.                                                                                                                          | Jobs                |                                                   |                         |
| Secrets                       | 2. In the Repository field, optionally enter a                                                                                  | Q                   |                                                   |                         |
| Developer Tools               | Maven repository URL.                                                                                                           | Search              |                                                   |                         |
| Databricks File System - DBFS | Note                                                                                                                            |                     |                                                   |                         |
| Databricks IO Cache           | Note                                                                                                                            |                     |                                                   |                         |
| Business Intelligence Tools   | Internal Maven repositories are not                                                                                             |                     |                                                   |                         |
| Advanced Features             | supported.                                                                                                                      |                     |                                                   |                         |
| Security                      |                                                                                                                                 |                     |                                                   |                         |

#### RESULTS

The result of this study is an enhanced demo version. If you have an Azure subscription, you can build it yourself starting <u>here</u>. If you need a step-by-step tutorial on how to deploy Azure ML SDK and databricks, you can use <u>this youtube video</u>.

| DODTU  |               |        |     |
|--------|---------------|--------|-----|
| PORTAL | joepareti54@g | mail.c | :om |
| sdk    |               | ?      | •   |
|        |               |        |     |
|        |               |        |     |
|        |               |        |     |
|        |               |        |     |
|        | PORTAL        |        |     |

|      | Message |
|------|---------|
| er-4 |         |
|      |         |
|      |         |

#### PERFORMANCE BENCHMARKING

The previous release was tested on a single DSVM with 4 vCPUs and 16 GB RAM; The current release is on a databricks cluster with 2 to 8 nodes that are Standard\_DS13\_v2

| Release  | Notebook 2 Time-to-solution | Notebook 3 Time-to-solution |
|----------|-----------------------------|-----------------------------|
| previous | 71 minutes                  | 10 minutes                  |
| current  | 27 minutes                  | 21 minutes                  |

The above figures only give a qualitative indication because I did not use the "run all" feature as recommended in the comments in the code (see appendix).

#### **CONCLUSION & RECOMMENDATIONS**

Compared to the previous release, the current one provides:

- Same accuracy, recall, F1
- Shorter time to solution
- Easier administration

If you are interested to implement predictive maintenance using ML, I offer a discovery workshop and Scope of Work service. Please approach me at joepareti54@gmail.com

Case Study Authors – Joseph Pareti and Yassine Khelifi

Appendix: data ingestion

telemetry.csv

```
sdatabricks<sup>.</sup>
```

dbfs:/dataset/telemetry.csv

```
jp (Python)
```

```
import os
import time
import matplotlib.pyplot as plt
import seaborn as sns
import pandas as pd
plt.style.use('ggplot')
# Time the notebook execution.
# This will only make sense if you "Run all cells"
tic = time.time()
parquet_files_names = {'machines':'machines_files.parquet', 'maint':'maint_files.parquet',
         'errors': 'errors_files.parquet', 'telemetry': 'telemetry_files.parquet',
        'failures':'failure_files.parquet'}
csv_files_names = {'machines':'machines.csv','maint':'maint.csv',
         'errors': 'errors.csv','telemetry':'telemetry.csv',
        'failures':'failures.csv'}
target_dir = "dbfs:/dataset/"
storage_path = "wasb://predmaintenance@amlgitsamples.blob.core.windows.net/data/"
#dbutils.fs.rm(target_dir, recurse - True)
dbutils.fs.mkdirs(target_dir)
dbutils.fs.cp(storage_path, target_dir, recurse-True)
display(dbutils.fs.ls(target_dir))
 path
                                                                                                               name
 dbfs:/dataset/errors.csv
                                                                                                                  errors.csv
 dbfs:/dataset/failures.csv
                                                                                                                  failures.csv
 dbfs:/dataset/machines.csv
                                                                                                                  machines.csv
 dbfs:/dataset/maint.csv
                                                                                                                  maint.csv
```

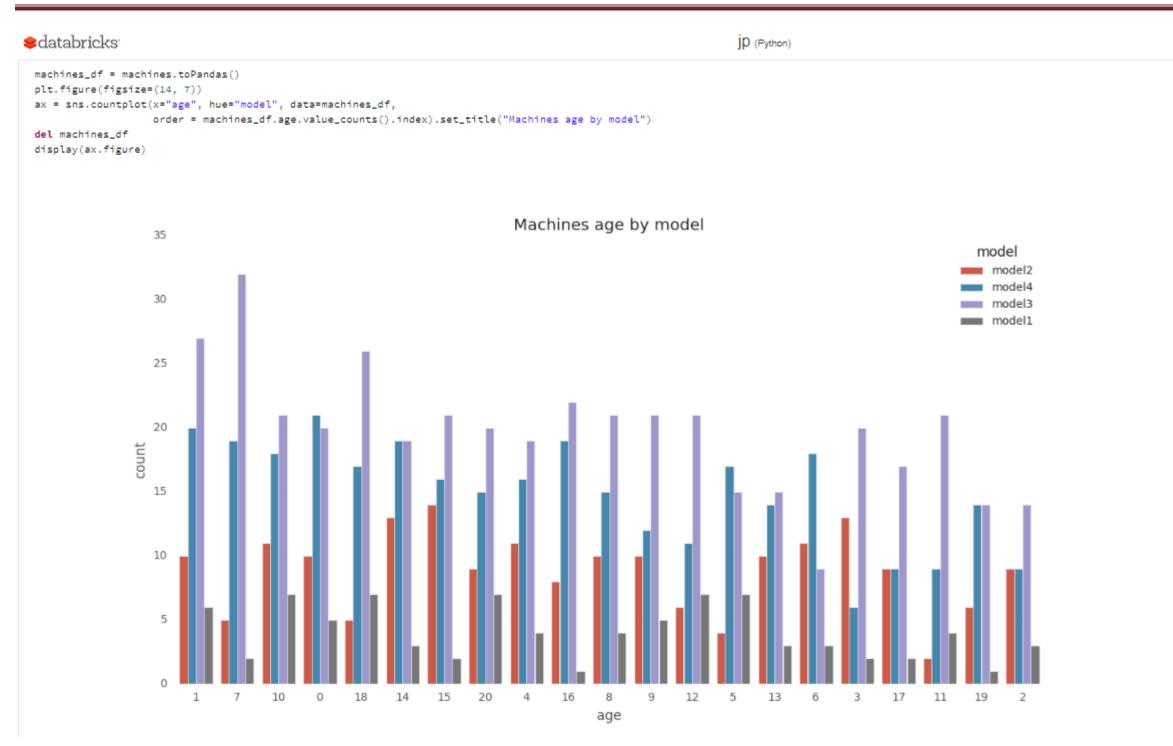
| size      |
|-----------|
| 405509    |
| 221172    |
| 16435     |
| 1039435   |
| 809939545 |
|           |

```
machines = spark.read.format("csv") \
.option("header", "true") \
.option("inferSchema", "true") \
.load(os.path.join(storage_path,csv_files_names['machines']))
display(machines_table(5))
```

| display | (machines.t | ake(5)) |
|---------|-------------|---------|
|---------|-------------|---------|

| machinelD | model  |
|-----------|--------|
| 1         | model2 |
| 2         | model4 |
| 3         | model3 |
| 4         | model3 |
| 5         | model2 |
| <u>*</u>  |        |

| - | age |
|---|-----|
|   | 18  |
|   | 7   |
|   | 8   |
|   | 7   |
|   | 2   |



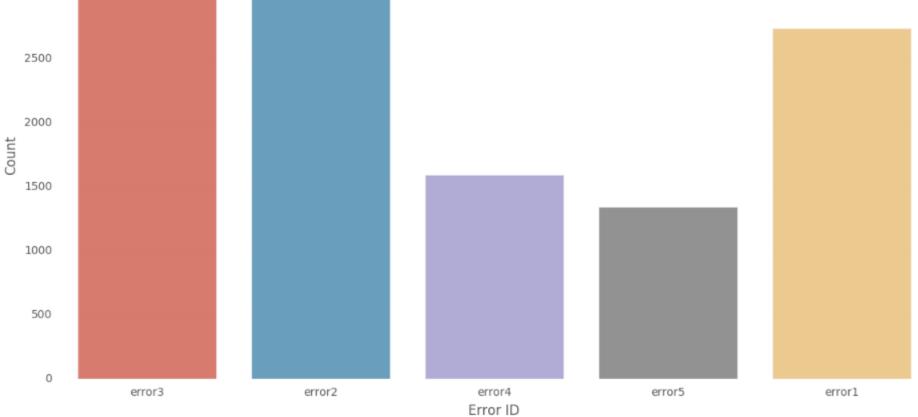
```
errors = spark.read.format("csv") \
   .option("header", "true") \
   .option("inferSchema", "true") \
   .load(os.path.join(storage_path,csv_files_names['errors']))
```

display(errors.take(5))

| datetime                     | machinelD | errorID |
|------------------------------|-----------|---------|
| 2015-01-06T03:00:000+0000    | 1         | error3  |
| 2015-02-03T06:00:00.000+0000 | 1         | error4  |
| 2015-02-21T11:00:00.000+0000 | 1         | error1  |
| 2015-02-21T16:00:000+0000    | 1         | error2  |
| 2015-03-20T06:00:000+0000    | 1         | error1  |

\*

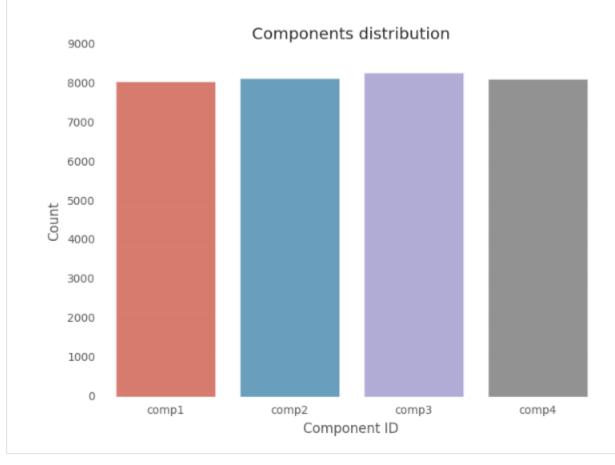




maint= spark.read.format("csv") \
 .option("header", "true") \
 .option("inferSchema", "true") \
 .load(os.path.join(storage\_path,csv\_files\_names['maint']))
display(maint.take(5))

| datetime                     | machinelD | comp  |
|------------------------------|-----------|-------|
| 2014-07-01T08:00:00.000+0000 | 1         | comp4 |
| 2014-09-14T08:00:00.000+0000 | 1         | comp1 |
| 2014-09-14T08:00:00.000+0000 | 1         | comp2 |
| 2014-11-13T08:00:00.000+0000 | 1         | comp3 |
| 2015-01-05T08:00:00.000+0000 | 1         | comp1 |
|                              |           |       |

#### \*



telemetry = spark.read.format("csv") \
.option("header", "true") \
.option("inferSchema", "true") \
.load(os.path.join(storage\_path, csv\_files\_names['telemetry']))

# handle missing values
# define groups of features

telemetry\_cols = telemetry.columns

features\_datetime = ['datetime']
features\_categorical = ['machineID']
features\_numeric = list(set(telemetry\_cols) - set(features\_datetime) - set(features\_categorical))

# Replace numeric NA with 0
telemetry = telemetry.fillna(0, subset = features\_numeric)

# Replace categorical NA with 'Unknown'
telemetry = telemetry.fillna("Unknown", subset = features\_categorical)

# Counts...
print(telemetry.count())

#### # Examine 10 rows of data.

display(telemetry.take(10))

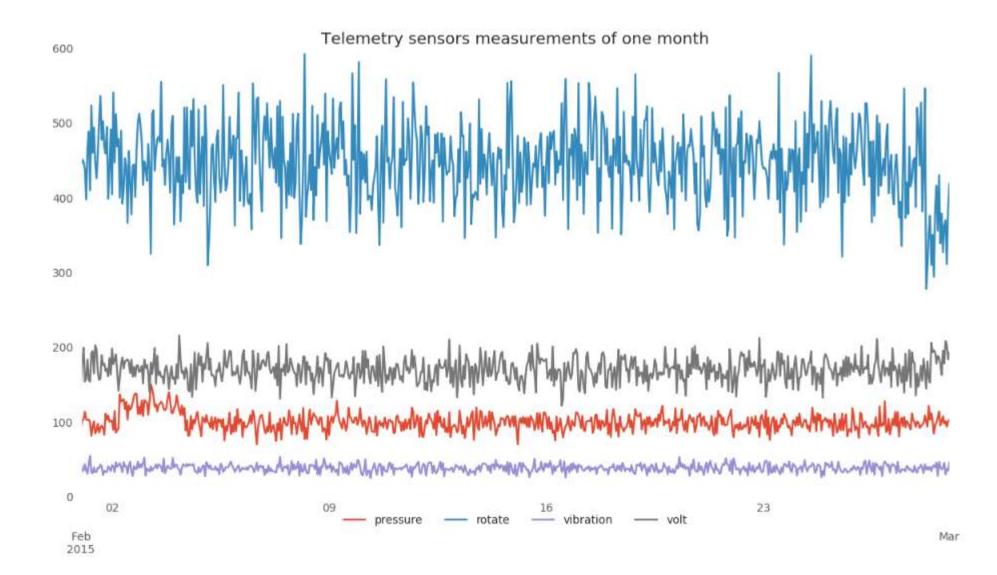
| datetime                     | machinelD 🔍 | volt             | rotate 🔍         | pressure 🔍       | vibration        |
|------------------------------|-------------|------------------|------------------|------------------|------------------|
| 2015-01-01T08:00:00.000+0000 | 1           | 151.919998705647 | 530.813577555042 | 101.788175260076 | 49.6040134898504 |
| 2015-01-01T07:00:00.000+0000 | 1           | 174.522001096471 | 535.523532319384 | 113.256009499254 | 41.5159054753218 |
| 2015-01-01T08:00:00.000+0000 | 1           | 146.912821646066 | 456.080746005808 | 107.786964633461 | 42.0996936545816 |
| 2015-01-01T09:00:00.000+0000 | 1           | 179.530560852404 | 503.469990485512 | 108.283817221771 | 37.8477274946112 |
| 2015-01-01T10:00:00.000+0000 | 1           | 180.544276621327 | 371.600611295334 | 107.55330679883  | 41.4678800376109 |
| 2015-01-01T11:00:00.000+0000 | 1           | 141.41175703074  | 530.857266087542 | 87.6140012779218 | 44.9858461978707 |
| 2015-01-01T12:00:00.000+0000 | 1           | 184.083821743344 | 450.2275288129   | 87.6973797069792 | 30.8312627133489 |
| 2015-01-01T13:00:00.000+0000 | 1           | 166.632618417563 | 486.466837788584 | 108.067733800301 | 50.3800539242367 |
| 2015-01-01T14:00:00.000+0000 | 1           | 159.892748369181 | 488.968697483274 | 102.131884360457 | 43.661296546187  |

±

plt\_data = telemetry.filter(telemetry.machineID == 1).toPandas()

```
# format datetime field which comes in as string
plt_data['datetime'] = pd.to_datetime(plt_data['datetime'], format="%Y-%m-%d %H:%M:%S")
```

```
plt_data = pd.melt(plot_df, id_vars=['datetime', 'machineID'])
```

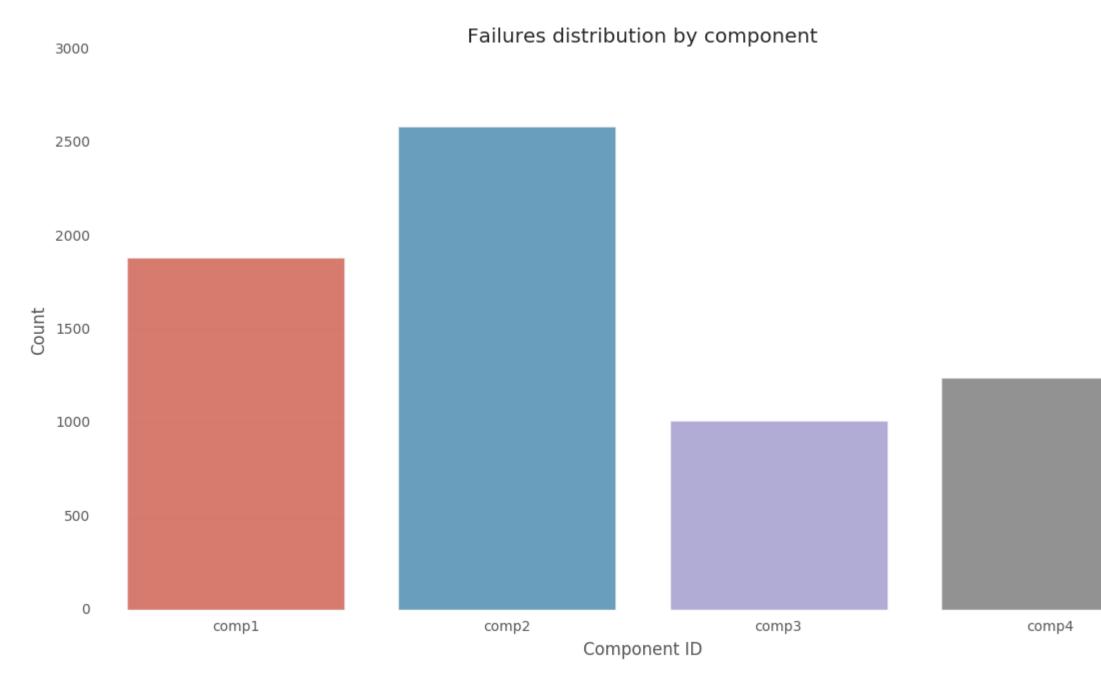


```
failures = spark.read.format("csv") \
  .option("header", "true") \
  .option("inferSchema", "true") \
  .load(os.path.join(storage_path,csv_files_names['failures']))
```

```
display(failures.take(5))
```

| datetime                     | machinelD | failure |
|------------------------------|-----------|---------|
| 2015-02-04T06:00:00.000+0000 | 1         | comp3   |
| 2015-03-21T06:00:00.000+0000 | 1         | comp1   |
| 2015-04-05T06:00:00.000+0000 | 1         | comp4   |
| 2015-05-05T06:00:00.000+0000 | 1         | comp3   |
| 2015-05-20T06:00:00.000+0000 | 1         | comp2   |

### \*





machines.write.mode('overwrite').parquet(os.path.join(target\_dir,parquet\_files\_names['machines']))
errors.write.mode('overwrite').parquet(os.path.join(target\_dir,parquet\_files\_names['errors']))
maint.write.mode('overwrite').parquet(os.path.join(target\_dir,parquet\_files\_names['maint']))
telemetry.write.mode('overwrite').parquet(os.path.join(target\_dir,parquet\_files\_names['telemetry']))
failures.write.mode('overwrite').parquet(os.path.join(target\_dir,parquet\_files\_names['failures']))

```
for key, val in csv_files_names.items():
    dbutils.fs.rm(os.path.join(target_dir, csv_files_names[key]))
```

```
toc = time.time()
print("Full run took %.2f minutes" % ((toc - tic)/60))
```

Full run took 13.98 minutes

Appendix: feature engineering

## databricks<sup>-</sup>

2\_features\_engineering (Python)

## Setup our environment by importing required libraries
import time
import os
import glob

# For creating some preliminary EDA plots. import matplotlib.pyplot as plt import seaborn as sns import pandas as pd plt.style.use('ggplot')

import datetime

from pyspark.ml import Pipeline
from pyspark.ml.feature import OneHotEncoder,StringIndexer
from pyspark.sql import SparkSession

# Time the notebook execution.
# This will only make sense if you "Run all cells"
tic = time.time()

```
target_dir = "dbfs:/dataset/"
```

# Read in the data
machines = spark.read.parquet(os.path.join(target\_dir, parquet\_files\_names['machines']))

print(machines.count())
display(machines.limit(5))

| machinelD | model  | age |
|-----------|--------|-----|
| 1         | model2 | 18  |
| 2         | model4 | 7   |
| 3         | model3 | 8   |
| 4         | model3 | 7   |
| 5         | model2 | 2   |

\*

errors = spark.read.parquet(os.path.join(target\_dir, parquet\_files\_names['errors']))

print(errors.count())
display(errors.limit(5))

| datetime                     | machinelD | errorID |
|------------------------------|-----------|---------|
| 2015-01-06T03:00:00.000+0000 | 1         | error3  |
| 2015-02-03T06:00:00.000+0000 | 1         | error4  |
| 2015-02-21T11:00:00.000+0000 | 1         | error1  |
| 2015-02-21T16:00:00.000+0000 | 1         | error2  |
| 2015-03-20T06:00:000+0000    | 1         | error1  |

\*

\*

#### maint = spark.read.parquet(os.path.join(target\_dir, parquet\_files\_names['maint']))

## print(maint.count()) display(maint.limit(5))

| datetime                     | machinelD | comp  |
|------------------------------|-----------|-------|
| 2014-07-01T06:00:00.000+0000 | 1         | comp4 |
| 2014-09-14T06:00:00.000+0000 | 1         | comp1 |
| 2014-09-14T06:00:00.000+0000 | 1         | comp2 |
| 2014-11-13T06:00:000+0000    | 1         | comp3 |
| 2015-01-05T06:00:000+0000    | 1         | comp1 |

#### telemetry = spark.read.parquet(os.path.join(target\_dir, parquet\_files\_names['telemetry']))

```
print(telemetry.count())
display(telemetry.limit(5))
```

| datetime                     | machinelD 📃 | volt             | rotate 💌         | pressure         | vibration        |
|------------------------------|-------------|------------------|------------------|------------------|------------------|
| 2015-01-01T06:00:00.000+0000 | 1           | 151.919998705647 | 530.813577555042 | 101.788175260076 | 49.6040134898504 |
| 2015-01-01T07:00:00.000+0000 | 1           | 174.522001096471 | 535.523532319384 | 113.256009499254 | 41.5159054753218 |
| 2015-01-01T08:00:00.000+0000 | 1           | 146.912821646066 | 456.080746005808 | 107.786964633461 | 42.0996936545816 |
| 2015-01-01T09:00:00.000+0000 | 1           | 179.530560852404 | 503.469990485512 | 108.283817221771 | 37.8477274946112 |
| 2015-01-01T10:00:00.000+0000 | 1           | 180.544276621327 | 371.600611295334 | 107.55330679883  | 41.4678800376109 |

```
*
```

#### failures = spark.read.parquet(os.path.join(target\_dir, parquet\_files\_names['failures']))

## print(failures.count()) display(failures.limit(5))

| datetime                     | machinelD | failure |
|------------------------------|-----------|---------|
| 2015-02-04T06:00:00.000+0000 | 1         | comp3   |
| 2015-03-21T06:00:00.000+0000 | 1         | comp1   |
| 2015-04-05T06:00:00.000+0000 | 1         | comp4   |
| 2015-05-05T06:00:00.000+0000 | 1         | comp3   |
| 2015-05-20T06:00:00.000+0000 | 1         | comp2   |

```
# rolling mean and standard deviation
# Temporary storage for rolling means
tel_mean = telemetry
# Which features are we interested in telemetry data set
rolling_features = ['volt','rotate', 'pressure', 'vibration']
# n hours = n * 3600 seconds
time_val = 12 * 3600
# Choose the time_val hour timestamps to align the data
# dt_truncated looks at the column named "datetime" in the current data set.
# remember that Spark is lazy... this doesn't execute until it is in a withColumn statement.
dt_truncated = ((round(unix_timestamp(col("datetime")) / time_val) * time_val).cast("timestamp"))
```

```
# We choose windows for our rolling windows 12hrs, 24 hrs and 36 hrs
lags = [12, 24, 36]
# align the data
for lag_n in lags:
   wSpec = Window.partitionBy('machineID').orderBy('datetime').rowsBetween(1-lag_n, 0)
   for col_name in rolling_features:
       tel_mean = tel_mean.withColumn(col_name+'_rollingmean_'+str(lag_n),
                                      F.avg(col(col_name)).over(wSpec))
       tel_mean = tel_mean.withColumn(col_name+'_rollingstd_'+str(lag_n),
                                      F.stddev(col(col_name)).over(wSpec))
# Calculate lag values...
telemetry_feat = (tel_mean.withColumn("dt_truncated", dt_truncated)
                 .drop('volt', 'rotate', 'pressure', 'vibration')
                 .fillna(0)
                  .groupBy("machineID","dt_truncated")
                  .agg(F.mean('volt_rollingmean_12').alias('volt_rollingmean_12'),
                      F.mean('rotate_rollingmean_12').alias('rotate_rollingmean_12'),
                      F.mean('pressure_rollingmean_12').alias('pressure_rollingmean_12'),
                      F.mean('vibration_rollingmean_12').alias('vibration_rollingmean_12'),
                      F.mean('volt_rollingmean_24').alias('volt_rollingmean_24'),
                      F.mean('rotate_rollingmean_24').alias('rotate_rollingmean_24'),
                      F.mean('pressure_rollingmean_24').alias('pressure_rollingmean_24'),
                      F.mean('vibration_rollingmean_24').alias('vibration_rollingmean_24'),
                      F.mean('volt_rollingmean_36').alias('volt_rollingmean_36'),
                      F.mean('vibration_rollingmean_36').alias('vibration_rollingmean_36'),
                      F.mean('rotate_rollingmean_36').alias('rotate_rollingmean_36'),
                      F.mean('pressure_rollingmean_36').alias('pressure_rollingmean_36'),
                      F.stddev('volt_rollingstd_12').alias('volt_rollingstd_12'),
                      F.stddev('rotate_rollingstd_12').alias('rotate_rollingstd_12'),
                      F.stddev('pressure_rollingstd_12').alias('pressure_rollingstd_12'),
                      F.stddev('vibration_rollingstd_12').alias('vibration_rollingstd_12'),
                      F.stddev('volt_rollingstd_24').alias('volt_rollingstd_24'),
                      F.stddev('rotate_rollingstd_24').alias('rotate_rollingstd_24'),
                      F.stddev('pressure_rollingstd_24').alias('pressure_rollingstd_24'),
                      F.stddev('vibration_rollingstd_24').alias('vibration_rollingstd_24'),
                      F.stddev('volt_rollingstd_36').alias('volt_rollingstd_36'),
                      F.stddev('rotate_rollingstd_36').alias('rotate_rollingstd_36'),
                      F.stddev('pressure_rollingstd_36').alias('pressure_rollingstd_36'),
                      F.stddev('vibration_rollingstd_36').alias('vibration_rollingstd_36'), ))
```

```
print(telemetry_feat.count())
telemetry_feat.where((col("machineID") == 1)).limit(5).toPandas()
```

| 73 | 1000       |                  |                       |                            |   |
|----|------------|------------------|-----------------------|----------------------------|---|
| 0u | t[9]:      |                  |                       |                            |   |
|    | machineID  | dt_trunca        | ted volt_rollingmear  | n_12 rotate_rollingmean_12 | Λ |
| Θ  | 1          | 2015-05-02 12:00 | :00 171.712           | 451.677582                 |   |
| 1  | 1          | 2015-06-04 00:00 | :00 165.451           | 468.091340                 |   |
| 2  | 1          | 2015-06-16 12:00 | :00 169.018           | 8242 451.081749            |   |
| 3  | 1          | 2015-10-18 00:00 | :00 170.253           | 3894 457.685553            |   |
| 4  | 1          | 2015-10-30 12:00 | :00 171.302           | 458.251722                 |   |
|    | pressure_r | ollingmean_12 v  | ibration_rollingmean_ | _12 volt_rollingmean_24 \  |   |
| Θ  |            | 95.464429        | 39.0526               | 661 171.034969             |   |
| 1  |            | 95.770983        | 50.4317               | 169.759443                 |   |
| 2  |            | 99.485598        | 42.0678               | 891 168.865992             |   |
| 3  |            | 102.522720       | 38.9759               | 971 173.492286             |   |
| 4  |            | 100.603054       | 47.0704               | 461 169.921885             |   |
|    | rotate_rol | lingmean_24 pre  | ssure_rollingmean_24  | vibration_rollingmean_24   | ١ |
| Θ  |            | 455.780008       | 97.564578             | 39.527223                  |   |
| 1  |            | 461.370378       | 97.136211             | 50.890390                  |   |
| 2  |            | 442.447741       | 100.532297            | 40.806017                  |   |
| 3  |            | 458.380635       | 101.642031            | 39.906351                  |   |
| 4  |            | 457.776886       | 98.524571             | 44.258167                  |   |
|    |            |                  |                       |                            |   |

```
# create a column for each errorID
error_ind - (errors.groupBy("machineID","datetime","errorID").pivot('errorID')
             .agg(F.count('machineID').alias('dummy')).drop('errorID').fillna(0)
             .groupBy("machineID","datetime")
             .agg(F.sum('error1').alias('error1sum'),
                 F.sum('error2').alias('error2sum'),
                 F.sum('error3').alias('error3sum'),
                 F.sum('error4').alias('error4sum'),
                 F.sum('error5').alias('error5sum')))
# join the telemetry data with errors
error_count - (telemetry.join(error_ind,
                             ((telemetry['machineID'] -- error_ind['machineID'])
                              & (telemetry['datetime'] -- error_ind['datetime'])), "left")
               .drop('volt', 'rotate', 'pressure', 'vibration')
               .drop(error_ind.machineID).drop(error_ind.datetime)
              .fillna(0))
error_features - ['error1sum', 'error2sum', 'error3sum', 'error4sum', 'error5sum']
wSpec - Window.partitionBy('machineID').orderBy('datetime').rowsBetween(1-24, 0)
for col_name in error_features:
   # We're only interested in the erros in the previous 24 hours.
   error_count - error_count.withColumn(col_name+'_rollingmean_24',
                                        F.avg(col(col_name)).over(wSpec))
error_feat = (error_count.withColumn("dt_truncated", dt_truncated)
              .drop('error1sum', 'error2sum', 'error3sum', 'error4sum', 'error5sum').fillna(0)
              .groupBy("machineID","dt_truncated")
              .agg(F.mean('error1sum_rollingmean_24').alias('error1sum_rollingmean_24'),
                  F.mean('error2sum_rollingmean_24').alias('error2sum_rollingmean_24'),
                  F.mean('error3sum_rollingmean_24').alias('error3sum_rollingmean_24'),
                  F.mean('error4sum_rollingmean_24').alias('error4sum_rollingmean_24'),
                  F.mean('error5sum_rollingmean_24').alias('error5sum_rollingmean_24')))
```

print(error\_feat.count())
display(error\_feat.limit(5))

| machineID | dt_truncated                 | <pre>error1sum_rollingmean_24</pre> | error2sum_rollingmean_24 | error3sum_rollingmean_24 | error4sum_rollingmean_24 | error5sum_rollingmean_24 🛛 🔍 |
|-----------|------------------------------|-------------------------------------|--------------------------|--------------------------|--------------------------|------------------------------|
| 148       | 2015-01-31T12:00:00.000+0000 | 0                                   | 0                        | 0                        | 0                        | 0                            |
| 471       | 2015-01-03T00:00:00.000+0000 | 0                                   | 0                        | 0                        | 0                        | 0                            |
| 148       | 2015-06-13T00:00:00.000+0000 | 0                                   | 0                        | 0                        | 0                        | 0                            |
| 148       | 2015-10-06T12:00:00.000+0000 | 0                                   | 0                        | 0                        | 0                        | 0                            |
| 148       | 2015-11-26T00:00:00.000+0000 | 0                                   | 0                        | 0                        | 0                        | 0                            |
| *         |                              |                                     |                          |                          |                          |                              |

# create a column for each component replacement

```
maint_replace = (maint.groupBy("machineID","datetime","comp").pivot('comp')
               .agg(F.count('machineID').alias('dummy')).fillna(0)
               .groupBy("machineID","datetime")
               .agg(F.sum('comp1').alias('comp1sum'),
                F.sum('comp2').alias('comp2sum'),
                F.sum('comp3').alias('comp3sum'),
                F.sum('comp4').alias('comp4sum')))
```

maint\_replace = maint\_replace.withColumnRenamed('datetime','datetime\_maint')

```
print(maint_replace.count())
maint_replace.limit(5).toPandas()
```

#### 25121

Out[11]:

|   | machineID | datetime_maint      | comp1sum | comp2sum | comp3sum | comp4sum |
|---|-----------|---------------------|----------|----------|----------|----------|
| Θ | 25        | 2015-03-14 06:00:00 | Θ        | Θ        | Θ        | 1        |
| 1 | 965       | 2015-09-22 06:00:00 | 1        | Θ        | Θ        | 1        |
| 2 | 991       | 2015-12-28 06:00:00 | Θ        | 1        | Θ        | 1        |
| 3 | 880       | 2015-12-17 06:00:00 | Θ        | Θ        | Θ        | 1        |
| 4 | 973       | 2015-10-20 06:00:00 | Θ        | 1        | 1        | Θ        |

```
# We want to align the component information on telemetry features timestamps.
telemetry_times = (telemetry_feat.select(telemetry_feat.machineID, telemetry_feat.dt_truncated)
                   .withColumnRenamed('dt_truncated','datetime_tel'))
# Grab component 1 records
maint_comp1 = (maint_replace.where(col("comp1sum") == '1').withColumnRenamed('datetime','datetime_maint')
               .drop('comp2sum', 'comp3sum', 'comp4sum'))
# Within each machine, get the last replacement date for each timepoint
maint_tel_comp1 = (telemetry_times.join(maint_comp1,
                                        ((telemetry_times ['machineID']== maint_comp1['machineID'])
                                         & (telemetry_times ['datetime_tel'] > maint_comp1['datetime_maint'])
                                         & ( maint_comp1['comp1sum'] == '1')))
                   .drop(maint_comp1.machineID))
# Calculate the number of days between replacements
comp1 = (maint_tel_comp1.withColumn("sincelastcomp1",
                                    datediff(maint_tel_comp1.datetime_tel, maint_tel_comp1.datetime_maint))
         .drop(maint_tel_comp1.datetime_maint).drop(maint_tel_comp1.comp1sum))
print(comp1.count())
comp1.filter(comp1.machineID == '625').orderBy(comp1.datetime_tel).limit(5).toPandas()
3254437
Out[12]:
   machineID
                  datetime_tel sincelastcompl
         625 2015-01-01 12:00:00
                                          94
 Θ
                                          95
 1
        625 2015-01-02 00:00:00
                                          95
 2
        625 2015-01-02 12:00:00
        625 2015-01-03 00:00:00
                                          96
3
```

96

4

625 2015-01-03 12:00:00

```
# Grab component 2 records
maint_comp2 = (maint_replace.where(col("comp2sum") == '1').withColumnRenamed('datetime','datetime_maint')
               .drop('comp1sum', 'comp3sum', 'comp4sum'))
# Within each machine, get the last replacement date for each timepoint
maint_tel_comp2 = (telemetry_times.join(maint_comp2,
                                       ((telemetry_times ['machineID']== maint_comp2['machineID'])
                                        & (telemetry_times ['datetime_tel'] > maint_comp2['datetime_maint'])
                                        & ( maint_comp2['comp2sum'] == '1')))
                   .drop(maint_comp2.machineID))
# Calculate the number of days between replacements
comp2 = (maint_tel_comp2.withColumn("sincelastcomp2",
                                   datediff(maint_tel_comp2.datetime_tel, maint_tel_comp2.datetime_maint))
        .drop(maint_tel_comp2.datetime_maint).drop(maint_tel_comp2.comp2sum))
print(comp2.count())
comp2.filter(comp2.machineID == '625').orderBy(comp2.datetime_tel).limit(5).toPandas()
3278730
Out[13]:
  machineID
                   datetime_tel sincelastcomp2
Θ
        625 2015-01-01 12:00:00
                                             19
        625 2015-01-02 00:00:00
                                             20
1
        625 2015-01-02 12:00:00
                                             20
2
                                             21
3
        625 2015-01-03 00:00:00
                                             21
4
        625 2015-01-03 12:00:00
```

```
# Grab component 3 records
maint_comp3 = (maint_replace.where(col("comp3sum") == '1').withColumnRenamed('datetime','datetime_maint')
              .drop('comp1sum', 'comp2sum', 'comp4sum'))
# Within each machine, get the last replacement date for each timepoint
maint_tel_comp3 = (telemetry_times.join(maint_comp3, ((telemetry_times ['machineID']==maint_comp3['machineID'])
                                                     & (telemetry_times ['datetime_tel'] > maint_comp3['datetime_maint'])
                                                     & ( maint_comp3['comp3sum'] == '1')))
                   .drop(maint_comp3.machineID))
# Calculate the number of days between replacements
comp3 = (maint_tel_comp3.withColumn("sincelastcomp3",
                                   datediff(maint_tel_comp3.datetime_tel, maint_tel_comp3.datetime_maint))
         .drop(maint_tel_comp3.datetime_maint).drop(maint_tel_comp3.comp3sum))
print(comp3.count())
comp3.filter(comp3.machineID == '625').orderBy(comp3.datetime_tel).limit(5).toPandas()
3345413
Out[14]:
                    datetime_tel sincelastcomp3
   machineID
Θ
         625 2015-01-01 12:00:00
                                             19
1
         625 2015-01-02 00:00:00
                                             20
2
                                             20
        625 2015-01-02 12:00:00
        625 2015-01-03 00:00:00
                                             21
3
4
        625 2015-01-03 12:00:00
                                             21
```

```
# Grab component 4 records
maint_comp4 = (maint_replace.where(col("comp4sum") == '1').withColumnRenamed('datetime','datetime_maint')
               .drop('comp1sum', 'comp2sum', 'comp3sum'))
# Within each machine, get the last replacement date for each timepoint
maint_tel_comp4 = telemetry_times.join(maint_comp4, ((telemetry_times['machineID']==maint_comp4['machineID'])
                                                    & (telemetry_times['datetime_tel'] > maint_comp4['datetime_maint'])
                                                    & (maint_comp4['comp4sum'] == '1'))).drop(maint_comp4.machineID)
# Calculate the number of days between replacements
comp4 = (maint_tel_comp4.withColumn("sincelastcomp4",
                                    datediff(maint_tel_comp4.datetime_tel, maint_tel_comp4.datetime_maint))
         .drop(maint_tel_comp4.datetime_maint).drop(maint_tel_comp4.comp4sum))
print(comp4.count())
comp4.filter(comp4.machineID == '625').orderBy(comp4.datetime_tel).limit(5).toPandas()
3273666
Out[15]:
  machineID
                   datetime_tel sincelastcomp4
        625 2015-01-01 12:00:00
Θ
                                             139
        625 2015-01-02 00:00:00
1
                                            140
2
        625 2015-01-02 12:00:00
                                            140
3
        625 2015-01-03 00:00:00
                                            141
4
        625 2015-01-03 12:00:00
                                            141
```

```
# Join component 3 and 4
comp3_4 = (comp3.join(comp4, ((comp3['machineID'] == comp4['machineID'])
                             & (comp3['datetime_tel'] == comp4['datetime_tel'])), "left")
          .drop(comp4.machineID).drop(comp4.datetime_tel))
# Join component 2 to 3 and 4
comp2_3_4 = (comp2.join(comp3_4, ((comp2['machineID'] == comp3_4['machineID'])
                                 & (comp2['datetime_tel'] == comp3_4['datetime_tel'])), "left")
             .drop(comp3_4.machineID).drop(comp3_4.datetime_tel))
# Join component 1 to 2, 3 and 4
comps_feat = (comp1.join(comp2_3_4, ((comp1['machineID'] == comp2_3_4['machineID'])
                                     & (comp1['datetime_tel'] == comp2_3_4['datetime_tel'])), "left")
              .drop(comp2_3_4.machineID).drop(comp2_3_4.datetime_tel)
               .groupBy("machineID", "datetime_tel")
               .agg(F.max('sincelastcomp1').alias('sincelastcomp1'),
                   F.max('sincelastcomp2').alias('sincelastcomp2'),
                   F.max('sincelastcomp3').alias('sincelastcomp3'),
                   F.max('sincelastcomp4').alias('sincelastcomp4'))
              .fillna(0))
# Choose the time_val hour timestamps to align the data
dt_truncated = ((round(unix_timestamp(col("datetime_tel")) / time_val) * time_val).cast("timestamp"))
# Collect data
maint_feat = (comps_feat.withColumn("dt_truncated", dt_truncated)
             .groupBy("machineID","dt_truncated")
             .agg(F.mean('sincelastcomp1').alias('comp1sum'),
                  F.mean('sincelastcomp2').alias('comp2sum'),
                  F.mean('sincelastcomp3').alias('comp3sum'),
                  F.mean('sincelastcomp4').alias('comp4sum')))
print(maint_feat.count())
maint_feat.limit(5).toPandas()
731000
Out[16]:
   machineID
                   dt_truncated comp1sum comp2sum comp3sum comp4sum
                                                       211.0
Θ
          2 2015-05-13 12:00:00
                                  316.0
                                             181.0
                                                                 286.0
          2 2015-05-27 00:00:00
                                            195.0
                                                       225.0
                                                                 300.0
1
                                  330.0
2
                                    239.0
                                           239.0
                                                     179.0
                                                                134.0
          3 2015-01-26 12:00:00
3
                                    267.0
                                             267.0
                                                       207.0
                                                               162.0
          3 2015-02-23 00:00:00
                                    248.0
                                           173.0
                                                       218.0
                                                                 233.0
4
          4 2015-02-04 12:00:00
```

machines\_feat = machines\_cat.select([column for column in machines\_cat.columns if column not in drop\_list])

```
print(machines_feat.count())
display(machines_feat.limit(5))
```

| machineID | model 🔍 | age 🔷 | model_encoded   |
|-----------|---------|-------|-----------------|
| 1         | model2  | 18    | ▶ [0,3,[2],[1]] |
| 2         | model4  | 7     | ▶ [0,3,[1],[1]] |
| 3         | model3  | 8     | ▶ [0,3,[0],[1]] |
| 4         | model3  | 7     | ▶ [0,3,[0],[1]] |
| 5         | model2  | 2     | ▶ [0,3,[2],[1]] |

```
# join error features with component maintenance features
error_maint = (error_feat.join(maint_feat,
                               ((error_feat['machineID'] == maint_feat['machineID'])
                               & (error_feat['dt_truncated'] == maint_feat['dt_truncated'])), "left")
               .drop(maint_feat.machineID).drop(maint_feat.dt_truncated))
# now join that with machines features
error_maint_feat = (error_maint.join(machines_feat,
                                    ((error_maint['machineID'] == machines_feat['machineID'])), "left")
                   .drop(machines_feat.machineID))
# Clean up some unecessary columns
error_maint_feat = error_maint_feat.select([c for c in error_maint_feat.columns if c not in
                                           {'error1sum', 'error2sum', 'error3sum', 'error4sum', 'error5sum'}])
# join telemetry with error/maint/machine features to create final feature matrix
final_feat = (telemetry_feat.join(error_maint_feat,
                                 ((telemetry_feat['machineID'] == error_maint_feat['machineID'])
                                  & (telemetry_feat['dt_truncated'] == error_maint_feat['dt_truncated'])), "left")
              .drop(error_maint_feat.machineID).drop(error_maint_feat.dt_truncated))
print(final_feat.count())
final_feat.filter(final_feat.machineID == '625').orderBy(final_feat.dt_truncated).limit(5).toPandas()
```

|            | 1000                          |                      |                          |  |
|------------|-------------------------------|----------------------|--------------------------|--|
| <b>0</b> u | t[18]:                        |                      |                          |  |
|            | machineID dt_truncated        | volt_rollingmean_12  | rotate_rollingmean_12 \  |  |
| Θ          | 625 2015-01-01 12:00:00       | 169.065806           | 453.899968               |  |
| 1          | 625 2015-01-02 00:00:00       | 166.187365           | 458.219143               |  |
| 2          | 625 2015-01-02 12:00:00       | 169.363503           | 455.143198               |  |
| 3          | 625 2015-01-03 00:00:00       | 172.504043           | 461.494330               |  |
| 4          | 625 2015-01-03 12:00:00       | 174.102964           | 442.074061               |  |
|            |                               |                      |                          |  |
|            | pressure_rollingmean_12 vibra | -                    | -                        |  |
| Θ          | 97.857385                     | 44.903816            | 169.065806               |  |
| 1          | 95.377812                     | 42.361593            | 166.267437               |  |
| 2          | 97.519219                     | 41.000897            | 167.775434               |  |
| 3          | 101.483771                    | 40.299350            | 170.933773               |  |
| 4          | 99.900129                     | 39.624068            | 173.303503               |  |
|            | rotate_rollingmean_24 pressur | e rollingmean 24 vih | vration rollingmean 24 \ |  |
| Θ          | 453.899968                    | 97.857385            | 44.903816                |  |
| _          |                               |                      |                          |  |
| 1          | 459.462370                    | 96.064038            | 42.685859                |  |
| 2          | 456.681171                    | 96.448515            | 41.681245                |  |
| 3          | 458.318764                    | 99.501495            | 40.650123                |  |
| 4          | 451.784195                    | 100.691950           | 39.961709                |  |

dt\_truncated = ((round(unix\_timestamp(col("datetime")) / time\_val) \* time\_val).cast("timestamp"))

# 

print(fail\_diff.count())
display(fail\_diff.limit(5))

| machinelD | failure 💌 | dt_truncated                 |
|-----------|-----------|------------------------------|
| 1         | comp3     | 2015-02-04T12:00:00.000+0000 |
| 1         | comp1     | 2015-03-21T12:00:00.000+0000 |
| 1         | comp4     | 2015-04-05T12:00:00.000+0000 |
| 1         | comp3     | 2015-05-05T12:00:00.000+0000 |
| 1         | comp2     | 2015-05-20T12:00:00.000+0000 |

labeled\_features = (labeled\_features.withColumn("failure",

```
labeled_features.failure.cast(DoubleType()))
```

.fillna(0))

print(labeled\_features.count())
labeled\_features.limit(5).toPandas()

|    | 1358<br>t[20]:          |         |                   |                           |   |
|----|-------------------------|---------|-------------------|---------------------------|---|
| 00 |                         | ncated  | volt rollingmean  | _12 rotate_rollingmean_12 |   |
| 0  | 2 2015-05-13 12         |         | 175.323           |                           |   |
| 1  | 2 2015-05-27 00         | :00:00  | 188.145           | 033 451.339344            | Ļ |
| 2  | 3 2015-01-26 12         | :00:00  | 161.703           | 727 463.396395            | ; |
| 3  | 3 2015-02-23 00         | :00:00  | 170.371           | 785 448.846354            | Ļ |
| 4  | 4 2015-02-04 12         | :00:00  | 166.210           | 647 457.021218            | 3 |
|    |                         |         |                   |                           |   |
|    | pressure_rollingmean_12 | vibra   | tion_rollingmean_ | 12 volt_rollingmean_24 \  | L |
| Θ  | 97.735315               |         | 38.8531           | 08 171.646680             |   |
| 1  | 99.481043               |         | 39.6074           | 190.674288                |   |
| 2  | 100.549011              |         | 40.5265           | 38 165.583780             |   |
| 3  | 101.029086              |         | 40.8526           | 57 170.321834             |   |
| 4  | 96.402429               |         | 39.0046           | 65 168.190004             |   |
|    |                         |         |                   |                           |   |
|    | rotate_rollingmean_24   | pressur | e_rollingmean_24  | vibration_rollingmean_24  | λ |
| Θ  | 445.629804              |         | 101.522361        | 40.487794                 |   |
| 1  | 447.989854              |         | 98.177035         | 39.377754                 |   |
| 2  | 463.213045              |         | 100.602100        | 40.498309                 |   |
| 3  | 444.113111              |         | 100.046844        | 41.024862                 |   |
| 4  | 455.525175              |         | 97.686885         | 40.451908                 |   |

# To get the frequency of each component failure
lf\_count = labeled\_features.groupBy('failure').count().collect()
display(lf\_count)

| failure | count  |
|---------|--------|
| 0       | 724632 |
| 1       | 1886   |
| 4       | 1241   |
| 3       | 1012   |
| 2       | 2587   |

\*

# lag values to manually backfill label (bfill =7)
my\_window = Window.partitionBy('machineID').orderBy(labeled\_features.dt\_truncated.desc())

| # Create the previous 7 days                    |                                      |
|-------------------------------------------------|--------------------------------------|
| labeled_features = (labeled_features.withColumn | ("prev_value1".                      |
|                                                 | F.lag(labeled_features.failure).     |
|                                                 | over(my_window)).fillna(0))          |
| labeled_features = (labeled_features.withColumn |                                      |
| tabeted_reaches = (tabeted_reaches.wrthcotom    |                                      |
|                                                 | F.lag(labeled_features.prev_value1). |
|                                                 | over(my_window)).fillna(0))          |
| labeled_features = (labeled_features.withColumn | n("prev_value3",                     |
|                                                 | F.lag(labeled_features.prev_value2). |
|                                                 | over(my_window)).fillna(0))          |
| labeled_features = (labeled_features.withColumn | n("prev_value4",                     |
|                                                 | F.lag(labeled_features.prev_value3). |
|                                                 | over(my_window)).fillna(0))          |
| labeled_features = (labeled_features.withColumn |                                      |
|                                                 | F.lag(labeled_features.prev_value4). |
|                                                 |                                      |
|                                                 | over(my_window)).fillna(0))          |
| labeled_features = (labeled_features.withColumn |                                      |
|                                                 | F.lag(labeled_features.prev_value5). |
|                                                 | over(my_window)).fillna(0))          |
| labeled_features = (labeled_features.withColumn | 1("prev_value7",                     |
|                                                 | F.lag(labeled_features.prev_value6). |
|                                                 | over(my_window)).fillns(0))          |
|                                                 |                                      |
| # Create a label features                       |                                      |
| · create a table reatores                       |                                      |

- labeled\_features.prev\_value2 +
- labeled\_features.prev\_value3 +
- labeled\_features.prev\_value4 +
- labeled\_features.prev\_value5 +
- labeled\_features.prev\_value6 +
- labeled\_features.prev\_value7))

.drop(labeled\_features.prev\_value1).drop(labeled\_features.prev\_value2) .drop(labeled\_features.prev\_value3).drop(labeled\_features.prev\_value4) .drop(labeled\_features.prev\_value5).drop(labeled\_features.prev\_value6)

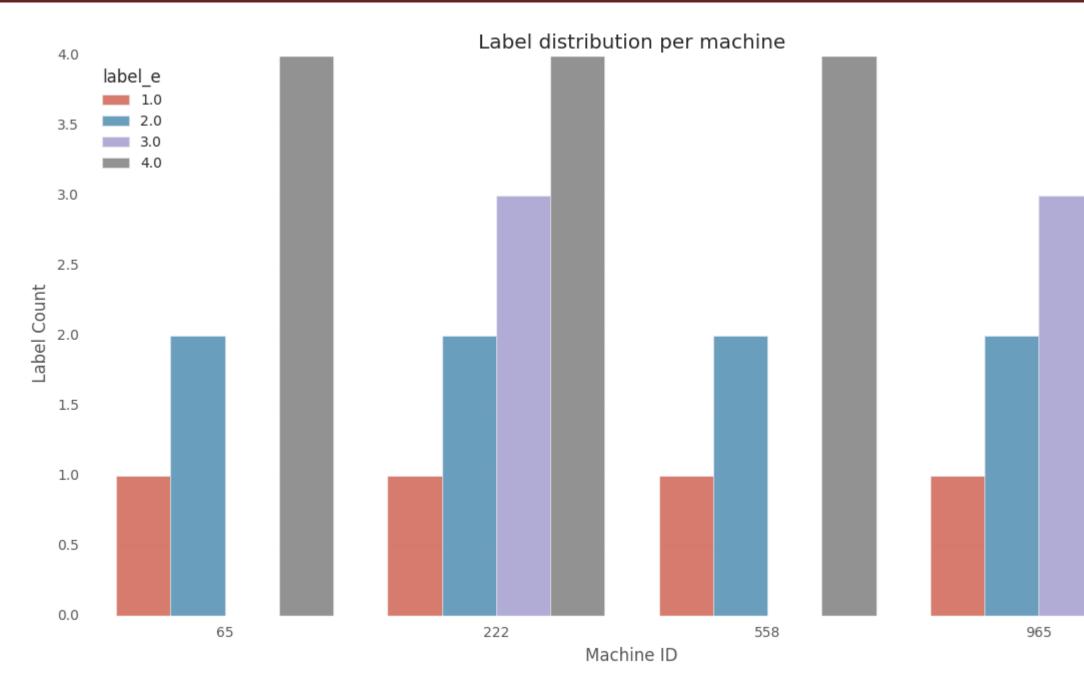
 $.drop(labeled_features.prev_value7).drop(labeled_features.label))\\$ 

print(labeled\_features.count())
labeled\_features.limit(5).toPandas()

| 73 | 1358                    |         |                     |                         |   |
|----|-------------------------|---------|---------------------|-------------------------|---|
| 0u | t[22]:                  |         |                     |                         |   |
|    | machineID dt_tru        | uncated | volt_rollingmean_1  | 2 rotate_rollingmean_12 | \ |
| Θ  | 148 2016-01-01 12       | 2:00:00 | 173.27034           | 439.327705              |   |
| 1  | 148 2016-01-01 00       | 00:00   | 173.72635           | 8 437.405911            |   |
| 2  | 148 2015-12-31 12       | 2:00:00 | 172.66853           | 9 448.928249            |   |
| 3  | 148 2015-12-31 00       | 00:00   | 172.76677           | 2 456.731624            |   |
| 4  | 148 2015-12-30 12       | 2:00:00 | 176.59490           | 4 443.839161            |   |
|    |                         |         |                     |                         |   |
|    | pressure_rollingmean_12 | 2 vibra | tion_rollingmean_12 | volt_rollingmean_24 \   |   |
| Θ  | 103.390004              | 4       | 39.473370           | 173.250180              |   |
| 1  | 102.663140              | 5       | 40.878636           | 173.197448              |   |
| 2  | 99.298873               | 3       | 41.416083           | 172.717655              |   |
| 3  | 100.950399              | 9       | 39.865345           | 174.680838              |   |
| 4  | 99.058763               | L       | 40.387021           | 175.485707              |   |
|    |                         |         |                     |                         |   |
|    | rotate_rollingmean_24   | pressur | e_rollingmean_24 v  | ibration_rollingmean_24 | ١ |
| Θ  | 443.242545              |         | 102.989579          | 40.977328               |   |
| 1  | 443.167080              |         | 100.981010          | 41.147360               |   |
| 2  | 452.829937              |         | 100.124636          | 40.640714               |   |
| 3  | 450.285392              |         | 100.004580          | 40.126183               |   |
|    |                         |         |                     |                         |   |

```
plt_data = (labeled_features.filter(labeled_features.label_e > 0)
           .where(col("machineID").isin({"65", "558", "222", "965"}))
           .select(labeled_features.machineID, labeled_features.label_e)).toPandas()
```

```
fig, ax = plt.subplots(figsize = (14,7))
sns.barplot(plt_data['machineID'], plt_data['label_e'], hue = plt_data['label_e'], alpha=0.8).set_title('Label distribution per machine')
ax.set_ylabel(" Label Count")
ax.set_xlabel("Machine ID")
display(ax.figure)
```



# Write labeled feature data to storage

labeled\_features.write.mode('overwrite').parquet(os.path.join(target\_dir, parquet\_files\_names['features']))

### toc = time.time()

print("Full run took %.2f minutes" % ((toc - tic)/60))

Full run took 27.43 minutes

## Appendix: model building



| databricks <sup>-</sup>                                                                 | model_building1 (Python) |
|-----------------------------------------------------------------------------------------|--------------------------|
| import os                                                                               |                          |
| import glob                                                                             |                          |
| import time                                                                             |                          |
| # for creating pipelines and model                                                      |                          |
| <pre>from pyspark.ml.feature import (StringIndexer, OneHotEncoder,</pre>                |                          |
| VectorAssembler, VectorIndexer)                                                         |                          |
| from pyspark.ml import Pipeline, PipelineModel                                          |                          |
| <pre>from pyspark.ml.classification import (RandomForestClassifier,DecisionTreeCl</pre> | lassifier)               |
| from pyspark.ml.evaluation import MulticlassClassificationEvaluator                     |                          |
| from pyspark.sql.functions import col                                                   |                          |
| from pyspark.sql import SparkSession                                                    |                          |
| # For some data handling & plotting                                                     |                          |
| import numpy as np                                                                      |                          |
| import pandas as pd                                                                     |                          |
| <pre>import matplotlib.pyplot as plt</pre>                                              |                          |
| <pre>plt.style.use('ggplot')</pre>                                                      |                          |
| <pre>from azureml.core import (Workspace, VERSION)</pre>                                |                          |
| from azureml.core.run import Run                                                        |                          |
| from azureml.core.experiment import Experiment                                          |                          |
| # Time the notebook execution.                                                          |                          |
| # This will only make sense if you "Run all cells"                                      |                          |
| <pre>tic = time.time()</pre>                                                            |                          |
| # Check core SDK version number                                                         |                          |
| print("AML-SDK version:", VERSION)                                                      |                          |
|                                                                                         |                          |

AML-SDK version: 1.0.17

# Enter workspace details below

```
subscription_id = "38620b93-e186-4292-b9d1-4159d7be1b28"
resource_group = "jp-resource-group-PAID"
workspace_name = "jpl-predictive-maintenance-v2-ws"
workspace_location = "West Europe"
```

```
ws = Workspace(workspace_name = workspace_name,
              subscription_id = subscription_id,
              resource_group = resource_group)
```

# persist workspace info in aml\_config/config.json which will be needed in notebook 04. ws.write\_config()

```
myexperiment = Experiment(ws, "Predictive_maintenance_Experiment")
run = myexperiment.start_logging()
```

Warning: Falling back to use azure cli login credentials.

If you run your code in unattended mode, i.e., where you can't give a user input, then we recommend to use ServicePrincipalAuthentication or MsiAuthentication. Please refer to aka.ms/aml-notebook-auth for different authentication mechanisms in azureml-sdk.

Performing interactive authentication. Please follow the instructions on the terminal.

To sign in, use a web browser to open the page https://microsoft.com/devicelogin and enter the code CR2CC27H3 to authenticate.

Interactive authentication successfully completed.

Wrote the config file config.json to: /databricks/driver/aml\_config/config.json

```
features_file = 'featureengineering_files.parquet'
target_dir = "dbfs:/dataset/"
model_dir = "dbfs:/model/"
feat_data = spark.read.parquet(os.path.join(target_dir,features_file))
feat_data.limit(10).toPandas()
```

| 0u | t[3]:     |             |           |                      |                       |   |
|----|-----------|-------------|-----------|----------------------|-----------------------|---|
|    | machineID | dt_         | truncated | volt_rollingmean_12  | rotate_rollingmean_12 | λ |
| Θ  | 114       | 2016-01-01  | 12:00:00  | 166.950543           | 294.433319            |   |
| 1  | 114       | 2016-01-01  | 00:00:00  | 165.290113           | 285.328277            |   |
| 2  | 114       | 2015-12-31  | 12:00:00  | 164.324247           | 260.243976            |   |
| 3  | 114       | 2015-12-31  | 00:00:00  | 171.891253           | 366.555058            |   |
| 4  | 114       | 2015-12-30  | 12:00:00  | 176.523807           | 374.260029            |   |
| 5  | 114       | 2015-12-30  | 00:00:00  | 166.193793           | 395.526750            |   |
| 5  | 114       | 2015-12-29  | 12:00:00  | 163.841386           | 465.801294            |   |
| 7  | 114       | 2015-12-29  | 00:00:00  | 168.414229           | 419.006087            |   |
| 8  | 114       | 2015-12-28  | 12:00:00  | 175.611464           | 416.986082            |   |
| 9  | 114       | 2015-12-28  | 00:00:00  | 171.309517           | 455.897688            |   |
|    | pressure_ | rollingmean | _12 vibra | ation_rollingmean_12 | volt_rollingmean_24 \ |   |
| 9  |           | 94.473      | 184       | 49.062098            | 165.197336            |   |
| L  |           | 96.147      | 439       | 51.315016            | 164.807180            |   |
| 2  |           | 102.238     | 964       | 48.625823            | 168.107750            |   |
| 3  |           | 102.072     | 506       | 39.475754            | 174.207530            |   |
| 4  |           | 101.621     | 576       | 40.830461            | 171.358800            |   |
| 5  |           | 95.027      | 049       | 40.731622            | 165.017589            |   |
| 6  |           | 95.226      | 886       | 39.178725            | 166.127807            |   |

# define list of input columns for downstream modeling

```
# We'll use the known label, and key variables.
label_var = ['label_e']
key_cols =['machineID','dt_truncated']
```

```
# Then get the remaing feature names from the data
input_features = feat_data.columns
```

```
# We'll use the known label, key variables and
# a few extra columns we won't need.
remove_names = label_var + key_cols + ['failure','model_encoded','model' ]
```

```
# Remove the extra names if that are in the input_features list
input_features = [x for x in input_features if x not in set(remove_names)]
```

input\_features

#### Out[4]:

['volt\_rollingmean\_12', 'rotate\_rollingmean\_12', 'pressure\_rollingmean\_12', 'vibration\_rollingmean\_12', 'volt\_rollingmean\_24', 'rotate\_rollingmean\_24', 'pressure\_rollingmean\_24', 'vibration\_rollingmean\_24', 'volt\_rollingmean\_36', 'vibration\_rollingmean\_36', 'rotate\_rollingmean\_36', 'pressure\_rollingmean\_36', 'volt\_rollingstd\_12', 'rotate\_rollingstd\_12', 'pressure\_rollingstd\_12', 'vibration\_rollingstd\_12', 'volt\_rollingstd\_24', 'rotate\_rollingstd\_24', 'pressure\_rollingstd\_24', 'vibration\_rollingstd\_24',

```
# assemble features
va = VectorAssembler(inputCols=(input_features), outputCol='features')
feat_data = va.transform(feat_data).select('machineID','dt_truncated','label_e','features')
```

```
# fit on whole dataset to include all labels in index
labelIndexer = StringIndexer(inputCol="label_e", outputCol="indexedLabel").fit(feat_data)
```

```
# split the data into train/test based on date
split_date = "2015-10-30"
training = feat_data.filter(feat_data.dt_truncated < split_date)
testing = feat_data.filter(feat_data.dt_truncated >= split_date)
```

```
run.log('training set size',training.count())
run.log('testing set size',testing.count())
```

```
model_type = 'RandomForest' # Use 'DecisionTree', or 'RandomForest'
# train a model.
if model_type == 'DecisionTree':
   model = DecisionTreeClassifier(labelCol="indexedLabel", featuresCol="indexedFeatures",
                                  # Maximum depth of the tree. (>= 0)
                                  # E.g., depth 0 means 1 leaf node; depth 1 means 1 internal node + 2 leaf nodes.'
                                  maxDepth=15,
                                  # Max number of bins for discretizing continuous features.
                                  # Must be >=2 and >= number of categories for any categorical feature.
                                  maxBins=32,
                                  # Minimum number of instances each child must have after split.
                                  # If a split causes the left or right child to have fewer than
                                  # minInstancesPerNode, the split will be discarded as invalid. Should be >= 1.
                                  minInstancesPerNode=1,
                                  # Minimum information gain for a split to be considered at a tree node.
                                  minInfoGain=0.0,
                                  # Criterion used for information gain calculation (case-insensitive).
                                  # Supported options: entropy, gini')
                                  impurity="gini")
   #elif model_type == 'GBTClassifier':
   # cls_mthd = GBTClassifier(labelCol="indexedLabel", featuresCol="indexedFeatures")
```

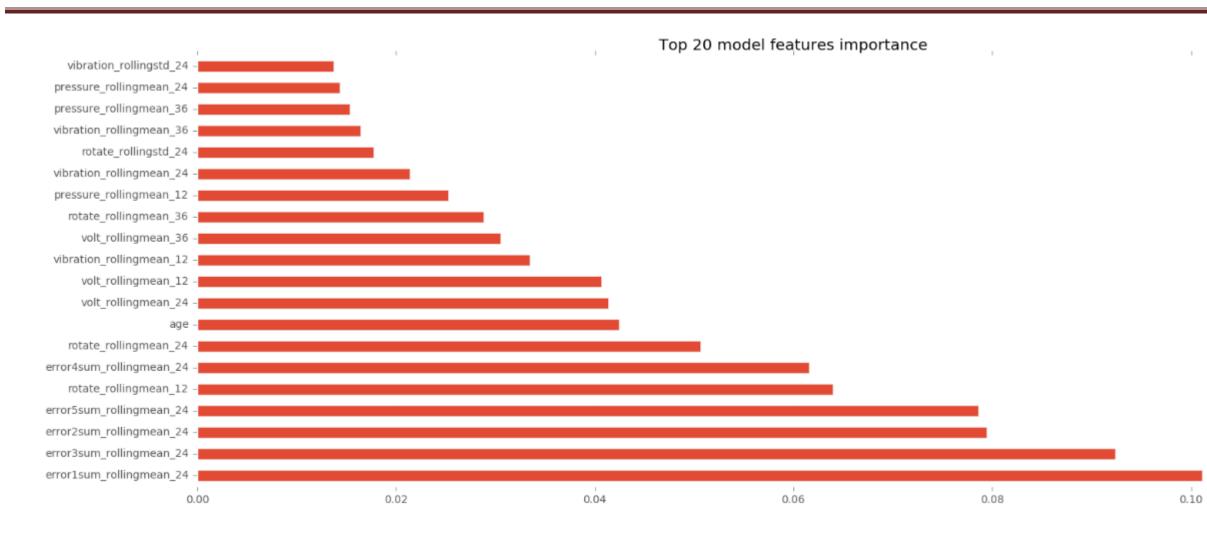
else:

```
model = RandomForestClassifier(labelCol="indexedLabel", featuresCol="indexedFeatures",
                                      # Passed to DecisionTreeClassifier
                                      maxDepth=15,
                                      maxBins=32,
                                      minInstancesPerNode=1,
                                      minInfoGain=0.0,
                                      impurity="gini",
                                      # Number of trees to train (>= 1)
                                      numTrees=50,
                                      # The number of features to consider for splits at each tree node.
                                      # Supported options: auto, all, onethird, sqrt, log2, (0.0-1.0], [1-n].
                                      featureSubsetStrategy="sqrt",
                                      # Fraction of the training data used for learning each
                                      # decision tree, in range (0, 1].'
                                      subsamplingRate = 0.632)
# chain indexers and model in a Pipeline
pipeline_cls_mthd = Pipeline(stages=[labelIndexer, featureIndexer, model])
# train model. This also runs the indexers.
model_pipeline = pipeline_cls_mthd.fit(training)
# make predictions. The Pipeline does all the same operations on the test data
predictions = model_pipeline.transform(testing)
# Create the confusion matrix for the multiclass prediction results
# This result assumes a decision boundary of p = 0.5
conf_table = predictions.stat.crosstab('indexedLabel', 'prediction')
display(conf_table)
confuse = conf_table.toPandas()
```

confuse.head()

| indexedLabel_prediction | 0.0    | 1.0 💌 | 2.0 💌 | 3.0 💌 | 4.0 |
|-------------------------|--------|-------|-------|-------|-----|
| 0.0                     | 119597 | 9     | 6     | 32    | 4   |
| 1.0                     | 2313   | 787   | 0     | 3     | 1   |
| 2.0                     | 1652   | 0     | 556   | 0     | 0   |
| 3.0                     | 1240   | 4     | 0     | 494   | 0   |
| 4.0                     | 1002   | 8     | 0     | 1     | 342 |
| *                       |        |       |       |       |     |

```
# select (prediction, true label) and compute test error
# select (prediction, true label) and compute test error
# True positives - diagonal failure terms
tp = confuse['1.0'][1]+confuse['2.0'][2]+confuse['3.0'][3]+confuse['4.0'][4]
# False positves - All failure terms - True positives
fp = np.sum(np.sum(confuse[['1.0', '2.0','3.0','4.0']])) - tp
# True negatives
tn = confuse['0.0'][0]
# False negatives total of non-failure column - TN
fn = np.sum(np.sum(confuse[['0.0']])) - tn
# Accuracy is diagonal/total
acc_n = tn + tp
acc_d = np.sum(np.sum(confuse[['0.0','1.0', '2.0','3.0','4.0']]))
acc = acc_n/acc_d
# Calculate precision and recall.
prec = tp/(tp+fp)
rec = tp/(tp+fn)
# Print the evaluation metrics to the notebook
print("Accuracy = %g" % acc)
print("Precision = %g" % prec)
print("Recall = %g" % rec )
print("F1 = %g" % (2.0 * prec * rec/(prec + rec)))
print("")
# track evaluation metrics through AML run.
ŧ
run.log("Model Accuracy", (acc))
run.log("Model Precision", (prec))
run.log("Model Recall", (rec))
run.log("Model F1", (2.0 * prec * rec/(prec + rec)))
run.complete()
Accuracy = 0.950996
Precision = 0.969737
Recall = 0.259838
F1 = 0.409856
importances = model_pipeline.stages[2].featureImportances
ax = (pd.Series(importances, index=input_features)
        .nlargest(20)
    .plot(kind='barh', title = 'Top 20 model features importance',
           figsize =(20,7)))
run.log_image('Features_importances', plot = ax.figure)
run.complete()
display(ax.figure)
```

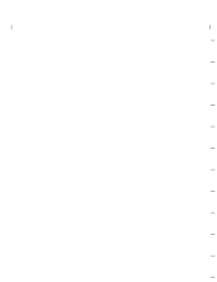


```
# save model
model_name = 'pdmrfull.model'
model_pipeline.write().overwrite().save(os.path.join(model_dir,model_name))
```

# Time the notebook execution.
# This will only make sense if you "Run All" cells
toc = time.time()
print("Full run took %.2f minutes" % ((toc - tic)/60))

Full run took 21.09 minutes

Appendix: operationalization



- -
- \_
- -

- .
- -

- .
- -
- -
- -
- -

## 0.12

# databricks<sup>-</sup>

4\_operationalization (Python)

## setup our environment by importing required libraries
import json
import os
import shutil
import time

from pyspark.ml import Pipeline
from pyspark.ml.classification import RandomForestClassifier

# for creating pipelines and model
from pyspark.ml.feature import StringIndexer, VectorAssembler, VectorIndexer

# setup the pyspark environment
from pyspark.sql import SparkSession

# AML SDK libraries
from azureml.core import Workspace, Run
from azureml.core.model import Model
from azureml.core.image import ContainerImage
from azureml.core.conda\_dependencies import CondaDependencies
from azureml.core.webservice import AciWebservice,Webservice

```
features_file = 'featureengineering_files.parquet'
target_dir = "dbfs:/dataset/"
```

```
feat_data = spark.read.parquet(os.path.join(target_dir,features_file))
feat_data.limit(5).toPandas().head(5)
```

| 0u | t[2]:          |              |       |                    |      |                         |   |
|----|----------------|--------------|-------|--------------------|------|-------------------------|---|
|    | machineID      | dt_trunc     | ated  | volt_rollingmear   | 1_12 | rotate_rollingmean_12   | Λ |
| Θ  | 114 2010       | 5-01-01 12:0 | 00:00 | 166.950            | 9543 | 294.433319              |   |
| 1  | 114 2010       | 5-01-01 00:0 | 00:00 | 165.290            | 9113 | 285.328277              |   |
| 2  | 114 2019       | 5-12-31 12:0 | 00:00 | 164.324            | 1247 | 260.243976              |   |
| з  | 114 2019       | 5-12-31 00:0 | 00:00 | 171.891            | 1253 | 366.555058              |   |
| 4  | 114 2019       | 5-12-30 12:0 | 0:00  | 176.523            | 3807 | 374.260029              |   |
|    |                |              |       |                    |      |                         |   |
|    | pressure_roll  | ingmean_12   | vibra | ation_rollingmean_ | 12   | volt_rollingmean_24 $\$ |   |
| Θ  |                | 94.473184    |       | 49.0620            | 98   | 165.197336              |   |
| 1  |                | 96.147439    |       | 51.3150            | 916  | 164.807180              |   |
| 2  | 1              | 102.238964   |       | 48.6258            | 323  | 168.107750              |   |
| з  | 1              | 102.072506   |       | 39.4757            | 754  | 174.207530              |   |
| 4  | 1              | 101.621576   |       | 40.8304            | 461  | 171.358800              |   |
|    |                |              |       |                    |      |                         |   |
|    | rotate_rolling | gmean_24 pr  | essur | re_rollingmean_24  | vit  | bration_rollingmean_24  | λ |
| Θ  | 278            | 8.987299     |       | 97.318305          |      | 50.799015               |   |
| 1  | 272            | 2.786127     |       | 99.193202          |      | 49.970419               |   |
| 2  | 313            | 3.399517     |       | 102.155735         |      | 44.050788               |   |
| з  | 370            | 0.407544     |       | 101.847041         |      | 40.153107               |   |
| 4  | 384            | 4.893390     |       | 98.324312          |      | 40.781041               |   |

```
model_name = 'pdmrfull.model'
model_local = "file:" + os.getcwd() + "/" + model_name
model_dir = os.path.join("dbfs:/model/", model_name)
dbutils.fs.cp(model_dir, model_local, True)
display(dbutils.fs.ls(model_local))
```

| path                                             | name 💌    | size |
|--------------------------------------------------|-----------|------|
| file:/databricks/driver/pdmrfull.model/metadata/ | metadata/ | 4096 |
| file:/databricks/driver/pdmrfull.model/stages/   | stages/   | 4096 |

\*

```
ws = Workspace.from_config()
model_name = 'pdmrfull.model'
model = Model.register(model_path= model_name, model_name=model_name , workspace=ws)
print("Registered:", model.name)
```

```
Found the config file in: /databricks/driver/aml_config/config.json
Registering model pdmrfull.model
Registered: pdmrfull.model
```

```
conda_env = CondaDependencies.create(conda_packages=['pyspark'])
with open("conda_env.yml","w") as f:
    f.write(conda_env.serialize_to_string())
```

```
%%writefile score.py
```

```
from azureml.core.model import Model
from pyspark.ml.feature import StringIndexer, VectorAssembler, VectorIndexer
from pyspark.ml import PipelineModel
import pyspark
import json
```

```
def init():
```

```
global pipeline,spark
```

```
spark = pyspark.sql.SparkSession.builder.appName("Predictive maintenance service").getOrCreate()
model_path = Model.get_model_path('pdmrfull.model')
pipeline = PipelineModel.load(model_path)
```

```
def run(raw_data):
    try:
        sc = spark.sparkContext
        input_list = json.loads(raw_data)
        input_rdd = sc.parallelize(input_list)
        input_df = spark.read.json(input_rdd)
        key_cols =['label_e', 'machineID', 'dt_truncated', 'failure', 'model_encoded', 'model']
        input_features = input_df.columns
        # Remove unseen features by the model during training
        input_features = [x for x in input_features if x not in set(key_cols)]
        va = VectorAssembler(inputCols=(input_features), outputCol='features')
        data = va.transform(input_df).select('machineID', 'features')
        score = pipeline.transform(data)
        predictions = score.collect()
        preds = [str(x['prediction']) for x in predictions]
        result = preds
    except Exception as e:
        result = str(e)
    return json.dumps({"result":result})
```

Writing score.py

```
image_config = ContainerImage.image_configuration(runtime= "spark-py",
                              execution_script="score.py",
                              conda_file="conda_env.yml")
aci_config = AciWebservice.deploy_configuration(cpu_cores = 2,
                                           memory_gb = 4,
                                           tags = {'type': "predictive_maintenance"},
                                           description = "Predictive maintenance classifier")
aci_service_name = 'pred-maintenance-service'
print(aci_service_name)
aci_service = Webservice.deploy_from_model(workspace=ws,
                                     name=aci_service_name,
                                     deployment_config = aci_config,
                                     models = [model],
                                     image_config = image_config
                                      )
aci_service.wait_for_deployment(True)
print(aci_service.state)
pred-maintenance-service
Creating image
Image creation operation finished for image pred-maintenance-service:1, operation "Succeeded"
Creating service
Running.....
SucceededACI service creation operation finished, operation "Succeeded"
Healthy
```

```
test_sample = (feat_data.sample(False, .8).limit(1))
excluded_cols = {'label_e', 'machineID', 'dt_truncated', 'failure', 'model_encoded', 'model'}
input_features = set(test_sample.columns)- excluded_cols
raw_input = test_sample.toJSON().collect()
prediction = aci_service.run(json.dumps(raw_input))
print(prediction)
{"result": ["0.0"]}
```

aci\_service.delete()

# Thank you for your interest in our free and voluntary UberCloud Experiment

If you, as an end-user, would like to participate in an UberCloud Experiment to explore hands-on the end-to-end process of on-demand Technical Computing as a Service, in the Cloud, for your business then please register at: http://www.theubercloud.com/hpcexperiment/.

If you, as a service provider, are interested in building a SaaS solution and promoting your services on the UberCloud Marketplace then please send us a message at https://www.theubercloud.com/help/.

2013 Compendium of case studies: https://www.theubercloud.com/ubercloud-compendium-2013/ 2014 Compendium of case studies: https://www.theubercloud.com/ubercloud-compendium-2014/ 2015 Compendium of case studies: https://www.theubercloud.com/ubercloud-compendium-2015/ 2016 Compendium of case studies: https://www.theubercloud.com/ubercloud-compendium-2016/ 2018 Compendium of case studies: https://www.theubercloud.com/ubercloud-compendium-2018/

The UberCloud Experiments and Teams received several prestigious international Awards, among other:

- HPCwire Readers Choice Award 2013: http://www.hpcwire.com/off-the-wire/ubercloud-receives-top-honors-2013-hpcwire-readers-choice-awards/ -
- HPCwire Readers Choice Award 2014: https://www.theubercloud.com/ubercloud-receives-top-honors-2014-hpcwire-readers-choice-award/
- Gartner Cool Vendor Award 2015: http://www.digitaleng.news/de/ubercloud-names-cool-vendor-for-oil-gas-industries/ -
- HPCwire Editors Award 2017: https://www.hpcwire.com/2017-hpcwire-awards-readers-editors-choice/ -
- IDC/Hyperion Research Innovation Excellence Award 2017: https://www.hpcwire.com/off-the-wire/hyperion-research-announces-hpc-innovation-excellence-award-winners-2/ -

If you wish to be informed about the latest developments in technical computing in the cloud, then please register at http://www.theubercloud.com/ and you will get our free monthly newsletter.



With support from



Please contact UberCloud help@theubercloud.com before distributing this material in part or in full. © Copyright 2018 UberCloud™. UberCloud is a trademark of TheUberCloud Inc.